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A particular way of basing numerical representations on the integral form of the 
diffusion equation is presented. By imposing certain restrictions on these representations, 
it is shown how to guarantee that the numerical solution will conserve mass, produce 
no negative masses, be stable, and have the same low-order moments as the analytical 
solution to the diffusion equation. Selected representations obtained using the method 
are found to be highly successful on sample tests, according to the various criteria used. 

I. INTRODUCTION 

Numerical representations of the diffusion equation have an important place in 
the solution of many problems in different branches of science. Usually such 
representations are based on the differential form of the diffusion equation; one 
works with concentrations at grid points. Here we develop numerical representa- 
tions based on the integral form of the diffusion equation, in which one works 
with masses in boxes. In most numerical representations, whether based on the 
differential or integral form of the diffusion equation, finite difference approxima- 
tions are used for at least some of the time and space derivatives involved. Here 
finite differences are replaced by sets of restrictions; the numerical solution 
generated by a representation satisfying particular sets of restrictions will be 
guaranteed to exactly model certain properties of the solution to the diffusion 
equation. 

In Section 2 we introduce the particular form of the numerical representations 
based on the integral form of the diffusion equation which will be used as the basis 
for further development in the paper. In Section 3 some criterion for measuring 
the success of numerical representations are presented and discussed: ease of 
generation and computation, goodness of fit, stability, nonnegativity of the masses, 
conservation of mass and correct center of mass motion. In Sections 4 and 5 it is 
shown how to formulate restrictions on numerical representations to directly or 
indirectly make the numerical solution satisfy these criteria. In Section 4 restric- 
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tions for ensuring conservation of mass and nonnegativity of the masses are 
considered; under certain circumstances these restrictions are sufficient to guarantee 
stability. In Section 5 a method is presented for formulating restrictions on the 
numerical representation sufficient to make the numerical solution possess low- 
order moments equal to corresponding moments of the analytical solution. This 
method, called “moment-fitting,” in most cases leads to improved goodness of fit, 
and as a by-product guarantees conservation of mass and correct center of mass 
motion. In the final section a number of selected representations are compared, 
using the various criteria, on a series of test problems. The representations 
guaranteed to model the properties of the solution to the diffusion equation 
considered here are found to be highly successful in nearly every respect. 

2. NUMERICAL REPRESENTATIONS BASED ON THE INTEGRAL FORM 
OF THE DIFFUSION EQUATION 

The differential form of the diffusion equation may be written 

ac(x, t)/at = -V . J(c, x, t) + Y(c, x, t), (1) 

where c(x, t) is the mass density or concentration, J(c, x, t) is the mass current 
density, and Y(c, x, t) the rate of change of concentration due to sources and 
sinks. J and 9 depend in general on the position x, time t, and the concentration 
c(x, t) and its derivatives. In this paper we restrict our attention to only those forms 
of (1) which are linear in c. A common and standard form for the mass current 
density J, linear in c, is the phenomenological relationship 

J(c, x, t) = -D(x, t) . @/ax) + V(x, t) c. (2) 

Here D(x, t) is a tensor of diffusion coefficients and V(x, t) is the velocity of the 
medium. Henceforth D and V and their analogs in other equations will be referred 
to as the diffusion parameters. 

To solve the diffusion equation numerically, it is usual to select a set of points 
distributed throughout the volume of the medium, and represent the time and 
space derivatives in (1) in finite difference form. Numerical representations of this 
type may be described as being based on the differential form of the diffusion 
equation. Often there are difficulties with such representations, ranging from 
nonconservation of total mass to spurious diffusion. 

An alternative is to base the numerical representation on the integral form of the 
diffusion equation. In integral form (1) may be written 

a=4w) ---=- at s J*nda+ 
s 

Y dx, 
A V 
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where 

k’(t) = j, c(x, t) dx. 

A(t) is the mass at time t in a volume V with surface A, da is an infinitesimal 
element of area of this surface, and n is a unit vector normal to the element of area 
da. J does not usually depend on A!(t) or masses in other volumes in the explicit 
manner that it depends on c(x, t). Therefore the analytical solution to the diffusion 
equation is normally found using (1); the mass d(t) may then be found using (4). 
But in constrast to the analytical situation, numerically it is convenient to use a 
representation based on the integral form (3). 

We now describe the general features of a class of numerical representations 
based on this integral form. The medium is partitioned into N boxes, and time 
divided into intervals of finite duration. Each box contains at a given time a certain 
mass; these masses change with time according to the algorithm 

m(t,,J = m(tJ W + W. (5) 

m(t) is an N-dimensional row vector whose ith component is the mass in box i at 
time t. P(s) is an IV x N matrix of transition probabilities, and S(s) an N-vector 
of sources. The positive integer s indicates the number of applications of the 
algorithm (5) to the vector of masses m, calculated from the initial time to . Thus 
t, indicates the time t after s applications or iterations of the algorithm (5). The 
duration t,+l - t, of time interval s + 1 is denoted by 7, . 

Conceptually the essential difference between numerical representations based 
on the differential and integral forms of the diffusion equation is that in the former 
one thinks about and works with concentrations at grid points, while in the latter 
one thinks about and works with masses in boxes. The direct advantage of basing a 
numerical representation on the integral form of the diffusion equation is that it is 
easy to ensure conservation of mass and nonnegativity of the masses, as we shall 
see in Section 4. However there is no guarantee that such representations will be 
successful in other respects. Each element of the matrix P(s) is calculated using 
functions of properties of the medium such as of the diffusion parameters D(x, t) 

and V(x, t). The values of the elements naturally depend on the numerical procedure 
by which they are calculated. If finite difference approximations are used to obtain 
P(s) then the representation will suffer many of the same shortcomings as those 
based on the differential form of the diffusion equation which use finite differences. 
The original method proposed in this paper, and detailed in Sections 4 and 5, 
involves determining the numerical representation by making it satisfy restrictions 
sufficient to make the numerical solution exactly model certain properties of the 
analytical solution. By avoiding finite differences, the representation can be 
formulated expressly to satisfy certain desirable properties, which we now consider. 
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(There are in addition to the methods described here a number of other ways of 
obtaining a numerical solution to the diffusion equation; these will be considered 
in Section 6.) 

3. CRITERIA FOR MEASURING THE SUCCESS OF A NUMERICAL REPRESENTATION 

There are a number of properties which are desirable in a numerical representa- 
tion of the diffusion equation. Some of the more important may be stated as 
follows. 

Ease of generation and computation. The representation should be obtainable 
without undue difficulty, and its use should not entail excessive computation. 

Goodness ofjit or accuracy. The mass distribution generated by the numerical 
representation should be as similar as possible to the distribution which is the 
solution to the diffusion equation. 

Stability. The numerical expressions for the masses should remain finite at all 
times and, if the diffusion parameters, sources and sinks are time-independent, 
converge after long periods of time to appropriate steady values which are 
independent of the initial mass distribution. 

Nonnegativity of the masses. The numerical expressions for the masses should 
remain always and everywhere positive or zero. 

Mass conservation. During any time interval, numerically the change in mass 
in a given volume should equal the mass flux across the borders of the volume, 
plus any change due to sources or sinks interior to the volume. 

Correct center of mass motion. Numerically, the center of mass of a given 
amount of diffusing substance should move at the same average velocity as the 
ambient medium, at least for distances over which the variation in the velocity 
of the medium is small. 

It is obvious that these properties are neither of equal importance nor mutually 
independent. The primary requirement of any numerical mode1 is the adequate 
approximation of the solution to the equation being represented, within the limita- 
tion of reasonable computational effort. In terms of our properties, this means a 
reasonable combination of goodness of fit and ease of generation and computation. 
The four other properties stated above are characteristics of the solution to the 
diffusion equation which is being approximated. Therefore if the numerical solution 
is sufficiently accurate, then the numerical representation will be stable, will at least 
approximately conserve mass and approximately mode1 the correct center of mass 
motion, and will not produce large negative masses. 
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But these latter four properties do not always follow as nicely as one would like 
from goodness of fit. For example a given numerical representation might give an 
expectation of a certain goodness of fit, but on occasions not be stable. In this 
circumstance we might wish to use a numerical representation guaranteed to be 
stable. Similarly we might wish to use a numerical representation for which masses 
are guaranteed never to become negative, and which both conserves mass and 
models the center of mass motion exactly. 

For most of the properties, it is straightforward to measure the success of a 
numerical representation in satisfying them. Ease of generation and computation 
may be measured by the number of arithmetical operations required, or by execu- 
tion time on a computer. One may without undue difficulty count the number of 
negative masses generated by the numerical representation at any time, and cal- 
culate the accuracy to which total mass is conserved and correct center of mass 
motion maintained. Representations can often be proved to be stable, and unstable 
behavior is usually readily apparent. 

The appropriate procedure for measuring goodness of fit is not so obvious. In 
numerical representations obtained using finite difference approximations, it is 
usual to determine the size of the expected error consequent to each application 
of the numerical algorithm. This technique can provide limits on the maximum 
error in the numerical solution, but does not give a direct measure of its goodness 
of fit at a given time. Furthermore, very often this technique does not put more 
then wide bounds on the goodness of fit after numerous applications of the 
numerical algorithm. 

With the method presented in this paper, numerical accuracy is obtained as a 
consequence of making the numerical representation satisfy certain restrictions 
which ensure that the numerical solution models certain properties of the analytical 
solution. To measure the goodness of fit obtained from representations generated 
with this method, we use a simple direct measure: the sum of the squares of the 
differences between the two distributions, m(t) and c(x, t). It is computationally 
convenient to take this sum over the masses in each box, in which case it is given by 

where the integral is over the volume of box i. We shall say that, given two 
numerical representations which generate distributions approximating the solution 
c(x, t), the one which results in a smaller L(t) gives a better fit to the solution at 
time t. L(t) will be used only to measure the goodness of fit of numerical represen- 
tations, and not as a basis for developing them. 

Given two numerical representations, the one that gives a better fit for small t, 
for example at t, , will not necessarily give a better fit for large t. Is it more 
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important that L(t) be small for small t or for large t? In most cases when 
a numerical representation of the diffusion equation is used, one desires to know 
the mass distribution only after a large number of applications of the numerical 
algorithm. The mass distribution after only a few applications need not be exact, so 
long as the final result is sufficiently accurate. Accurate determination of the mass 
distribution in a certain region and after a certain time interval T requires either 
an analytical solution or its equivalent, the result of numerous applications of some 
satisfactory numerical algorithm having a time interval much shorter than the 
interval T. 

In the next two sections we show how it is possible to make the numerical 
solution exactly model certain properties of the analytical solution. The numerical 
solution will possess these properties after an arbitrarily large number of 
applications of the numerical algorithm, and this leads to smaller values of L(t) 
than for representations that do not exactly model these properties, as will be seen 
in the concluding section. 

4. ENSURING CONSERVATION OF MASS, NONNEGATIVITY OF THE MASSES, 
AND STABILITY 

We show here that certain restrictions on the matrix P(s) are necessary and 
sufficient for the numerical representation with algorithm (5) to conserve mass and 
ensure nonnegativity of the masses. If P(s) satisfies these restrictions, then under 
certain rather general conditions the masses can be shown to be always finite. 
Furthermore, if P(s) and S(s) are independent of s, then the masses can be shown 
to converge to appropriate steady values. 

In numerical representations based on finite difference methods, finding criteria 
for stability is often a major problem. In our representations based on the integral 
form of the diffusion equation, the problem is handIed quite simply. The material 
in this section represents a generalization of the results of Bassett, Hewitt, and 
Martin [l], while the method used is also simpler and more convenient; all 
detailed proofs are given in Martin f2]. 

A. Diffusion with No Sources or Sinks 

Let S(s) = 0, so that (5) becomes 

m(t,+d = m(tJ P(s). 
It is easy to show that the restriction 

(7) 

03) 5 p&s) = 1, i=l ,..., N, 
j=l 
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is necessary and sufficient to ensure conservation of mass, and that the restriction 

Pii(S) 3 0, i,j= l,..., N, (9) 

is necessary and sufficient to ensure that each mass always remains nonnegative. 
These two restrictions reflect a process by which a fraction PJs) of the mass in 
box i at time t, moves to box j at time t,,r; the sum of the fractions must equal one 
to conserve mass, and each fraction must be nonnegative to avoid negative masses. 
The restrictions (8) and (9) thus reflect properties of the physical system being 
modeled by the diffusion equation, and justify the terms transition probabilities 
for the quantities P,?(s). 

A matrix is called stochastic if each of its elements is nonnegative and each row 
sum equals unity. Therefore a matrix satisfying (8) and (9) by definition is a 
stochastic matrix. It is easy to show that the product of any two stochastic matrices 
is stochastic (see [3, 41). Therefore, if (8) and (9) hold for each s, the masses deter- 
mined by each successive application of the algorithm (7) are guaranteed to remain 
nonnegative and to have a constant sum. Hence also each mass remains finite, and 
the representation is stable in the sense that errors do not grow without bound. 

If P(s) is independent of s, (7) becomes 

m(t,+d = m(t.J P. (10) 

The masses m(t) will converge to a set of limiting masses mm, 

(11) 

if and only if the matrix PC0 of limiting transition probabilities exists. It is not hard 
to show that Pm exists if and only if P is not cyclic (P is cyclic if there exists an n 3 2 
such that P” = P). An irreducible cyclic matrix has no diagonal elements; therefore 
the presence of at least one positive diagonal element is sufficient to ensure that Pm 
exists. Alternatively stated, if some of the original mass in at least one box remains 
there after a time interval, then the stochastic nature of P guarantees convergence 
to steady masses. A simple way to change a cyclic matrix into one having a nonzero 
diagonal element is to decrease the duration 7s of each time interval by any amount, 
no matter how small (see for example the matrix elements presented in Section 6). 
The masses m” to which m(t) converge may be considered “appropriate,” in that 
they satisfy (10) with m(t,,,) = m(tJ. 

B. Diffusion in the Presence of Sources and Sinks 

In the theory of stochastic matrices a persistent state is one of a group of states 
(or in our terminology, boxes) from which mass cannot escape to other states not 
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in the group. Persistent states effectively may be considered to be the sinks in the 
set of boxes for the transport process. The simplest case of a persistent state is an 
absorbing state, for which Pz((s) = 1. Once mass gets into such a state i, it cannot 
escape as long as state i is absorbing, for Pij(s) = 0, j # i. 

Instead of the conventional picture of mass transport causing loss of mass from 
the system by efflux across its boundaries or the like, in the numerical representation 
we may imagine such lost mass to have moved to a single additional box (now one 
of the set of N), which in this case would be an absorbing state. Only the transient 
states (defined as those states that are not persistent) correspond directly to the 
physical system being modeled. With this picture, loss of mass from the transient 
or physical system states may occur, while the transition probabilities still satisfy 
(8). The single absorbing state in the above example, or all the persistent states in 
general, may be considered to be the sinks for the transport process. The term 
S(s) then represents only sources, and each component may be taken to be non- 
negative. 

When there are sources S independent of s, it is not hard to show that if P is 
independent of time, the masses in the transient states will converge to appropriate 
steady values, while the masses in the persistent states grow without bound. If the 
sources or the transition probabilities vary with time, there is no set of limiting 
masses. In these situations it is possible to show that, if the set of persistent states 
is independent of s, the total mass in the transient states is always bounded. Thus 
under the conditions prevailing in most realistic problems, the restrictions guaran- 
teeing mass conservation and nonnegativity of the masses ensure that the numerical 
representation will be stable, and when sources and diffusion parameters do not 
vary with s, give convergence to appropriate steady masses in those (transient) 
states corresponding to the physical system. 

5. MOMENT-FITTING 

Here we show that it may be possible to place restrictions on a numerical 
representation of the form (5), sufficient to ensure that certain of the moments of 
the numerical solution will always remain equal to corresponding moments of the 
solution to the diffusion equation. This method we call “moment-fitting.” First 
we describe the method in general terms, then illustrate how it may be applied to 
a few specific problems, and finally comment on the use of the method. 

A. General Description of Moment-Fitting 

First consider certain moments of the analytical solution to the diffusion equation 
at time t, denoted by p:‘(t). The superscript (c) indicates that the moment is of the 
solution c(x, t) to the diffusion equation, and ri denotes an element of a set R, each 
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of whose elements rl ,..., r, stands for a particular moment. For example, we might 
have in a l-dimensional unbounded problem, ri = i - 1 and 

l-d:+&) = /-de)(f) = \= x%(x, t) dx. ‘-cc (12) 

By appropriately manipulating the differential form of the diffusion equation, it 
may be possible to write each moment pt)(t,+,) in terms of moments pt)(tJ, 
j = l,..., n: 

p$)(h) = flr,ddq’(t A.. .> d: (t,), diffusion parameters, sources and sinks), 

i = l,..., n. 

(13) 

As well as depending on the moments pt’(tJ,j = I,..., n, $(t,+J depends on the 
diffusion parameters, sources and sinks, such as D, V and Y m (1) and (2). ~~)(t,+,) 
may depend on complicated functions of these quantities at different positions and 
times. 

One general technique by which the functionsh,, in (13) may be obtained is to 
expand c(x, I,+~) in a power series about t, : 

where as before r, = ts+l - t, . Each time derivative (~kc/~tk)~t, in (14) may be 
expressed in terms of spatial derivatives of c(x, tJ by repeated use of (1) with 
coefficients that are functions of the diffusion parameters, sources and sinks. By 
substituting the resulting expression for c(x, t,,,) into the expression for the 
moment $)(ts+& and integrating out the spatial derivatives, a function of the 
form (13) may be obtained. The use of this technique will be illustrated in the 
examples given later. If the procedure is successful there will exist a closed set of n 
functionsh, s which are not unduly complicated. 

Next consider corresponding moments of the numerical solution at time rsfl , 
denoted by ~iy)(t~+~). The superscript (m) indicates that the moment is of the 
numerical solution m(r). By use of the algorithm (5), it may be possible to write 
each moment &~)(t,+,) in terms of moments pLy’(tJ ,j = l,..., n: 

&%,,I) = gi, sOly(cJ,. . .> d~k), P(s), S(s)), i=l n. ,..., (15) 

As well as depending on the moments pky)(ts),j = l,..., n, at time t,, ~y)(t~+J 
depends on the transition probabilities and sources in the numerical algorithm. If 
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the procedure is to be fully successful there will exist a closed set of n functions 
gi.s * 

Given the sets of functions& and gi,, , to make the numerical solution model 
at each time t, each of the moments ri ,.j = l,..., n, it is sufficient to satisfy two 
conditions. First, each such moment of m(t) must equal the corresponding moment 
of c(x, t) at the initial time r0 : 

&%) = pr4’(fo), j = l,..., n. (16) 

(16) is a set of equations to be solved for the initial masses mi(to), i = l,..., N. 
Normally there will be an infinity of real solutions to these equations since N > 72. 
Any solution to (16) will give the correct moments for m(t,,). One may choose from 
among the available solutions one that has other useful properties besides giving 
the correct moments. Most importantly, if possible the chosen solution should be 
nonnegative: mi(tO) 3 0, i = I,..., N. Not only is this physically realistic, but 
nonnegativity of the masses and stability can only be guaranteed if the masses are 
nonnegative at the initial time t, . Among other criteria that may be used to choose 
among solutions to (16) that are nonnegative, convenience perhaps ranks highest; 
for example the first appropriate solution determined might be used. 

Second, we require, assuming identity of the moments at time t, (pLy)(ts) = 
$)(ts) = pri ,j = l,..., n), that 

gi.scPq Y...Y clr, 9 P(s), S(s)) = f&j~,.~ ,..., Pi,, diffusion parameters, 

sources and sinks), i=l n, ,***, s >, 0. (17) 

This condition and the condition given by (16) are sufficient to ensure that cor- 
responding moments of the numerical and analytical solutions will always be equal. 
The Eqs. (17) provide n sets of restrictions on the transition probabilities P(s) and 
the sources S(s). If the procedure has been successful, there will usually be an 
infinity of solutions to (17). Whatever solution is chosen will be adequate to make 
the numerical solution model the moments rj ,j = l,..., n. In this case there are 
several ways to decide which solutions to (17) to choose. Most importantly, if at all 
possible the probabilities should be nonnegative and so satisfy (9). Convenience 
usually will dictate that the number of nonzero transition probabilities will be as 
small as possible and that these values be grouped together on each row of P(s). 
Judgement must be used in choosing the most appropriate solution, which will 
depend upon the features of the particular problem at hand. 

If m(t,,), P(s) and S(s) can be determined to satisfy (16) and (17), then at each 
time t, , s > 0, it will be true that 

(18) 
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Thus given that we wish to ensure that the numerical representation models the 
moments as indicated in (18) we first determine a set of initial masses m(t,) which 
satisfy (16). Then for each i and s transition probabilities and sources which satisfy 
(17) are used in the appropriate numerical algorithm. 

B. Moment-Fitting with a Simple I-Dimensional Form of the Diffusion Equation 

Consider the l-dimensional form of the diffusion equation, 

ac(x, t)/at = D(a2c(x, t)/ax2) - V(ac(x, t)/ax), (19) 

where D and V are constants. We take the set of moments 

p;“‘(t) = 1 O” xk(x, t) dx, j = o,..., n. (20) --m 

We apply (14) to c(x, ts+J, express each time derivative (@c/W)l,, as a sum of 
derivatives with respect to x by using (19) as many times as necessary, put the 
result in (20) and integrate by parts with respect to x until all spatial derivatives are 
removed. For example forj = 2 we have 

,&t,+J = jm x24x, ts,,) dx --m 

[c(x, tJ + ...I dx 

+ 2v j-1 x (c(x, t,) + ; [- - V “c(x’ 2; + ““] TV) dx/ 

= ,@(ts) + 2b+‘?‘(t.v) + (207, + v2Ts2) #(ts). 

In this and other calculations we assume that c and its spatial derivatives vanish as 
x + * co. More generally we may write 
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The weight FVk(7J is 

(22) 

Now consider moments of the numerical solution m(t). There are a number of 
possible types of moments that may be defined. We consider only one here, which 
is simple and convenient, and which results from assuming that each mass mi is 
concentrated at a point xi in box i. The jth moment of this distribution is 

/p(tJ = 5 x&z&,). 
i=l (23) 

For simplicity assume each box is of length h and the center of box i,, is at the 
origin. Setting xi = (i - i,) h, we have 

p:“‘(t) = : hj(i - iJi mJt). 
i==l 

From (7), the appropriate numerical representation for (19), we know that at time 
t s+1 a fraction Pi i+k(~) of the mass mi(ts) will be in box i + k, for each i and k. 
Therefore we may determine pim)(t,+,) as a function of the masses m,(tJ: 

,uf’$,+l) = *gl h%z&) Nf” (i + k - i,# Pi i+lc(s) 
k=-i+1 

We shall assume what will be true in almost every practical case, that the nonzero 
(or significantly greater than zero) values of Pi i+l* are grouped near k = 0, and 
that the number of these nonzero values is much smaller than IV. P(s) is calculated 
from the diffusion parameters D and V, the box length h, and the duration of the 
time interval 7, . Since each of these parameters is constant here, nearly every row 
of the matrix P(s) can be made identical relative to the diagonal element. The 
exceptions to this rule occur near the ends of the array, where the probabilities 
must be modified. Here this detail will be ignored by assuming that little or no mass 
approaches the ends during the time under consideration. So for all i not near the 
ends of the array we may write 

Pi i+&) = Q&h (26) 
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With the above assumptions, p’;m’(t,+,) from (25) may be written 

/~j~)(t,+~) = i ( j) hz 1 k”&(s) 5 hi-l(i - i,)j-l m&J 
Z=O k i=l 

(27) 

The weight IQ(S) is 
wz(s) = hz c klQ,(s). (28) 

k 

Given the above expressions we may determine expressions for m(to) and P(s) 
which ensure that for each I,~ 

pW(f ) 3 8 = pW(t ) 3 * 3 j = o,..., n. (29) 

The appropriate moments will be equal at to if m(to) is a solution to 

pj”‘(to) = z$l hi(i - i,#’ mi(to) 

= 
s 

c(x, to) xi dx = /p(tO), j = o,..., n. (30) 

As noted before, it is most important to choose a nonnegative solution for m(t,), 
and probably most convenient to take the first such solution that can be determined, 
since the results after long periods of time are unlikely to depend strongly on this 
choice. For most realistic distributions c(x, to), at least one nonnegative solution 
will exist, at least if n is not too large. 

Assume that an appropriate solution m(t,) to (30) has been chosen. To guarantee 
that the corresponding moments piLSm) and pj”) are equal at each later time t, , the 
weights wj and Wj must satisfy 

Wj(S) = W(Ts), j = O,..., n, s > 0. (31) 

Explicitly for n = 4 these relations are 

T  Pi i+k(s) = 1, (32) 

h ~kPii+k(s> = VT,, (33) 
k 

ha C k2Pi i+k(S) = ( VT~)~ + 207s 3 (34) 
k 

h3 C k3Pi i+k(S) = ( v7J3 + 6( ~TJ(D~J~ (35) 

h4 i k4Pi i+k(S) = (VTJ~ + ~~(VTS)~(DTS) + IZ(DT,)~, i = l,..., N. (36) 
k 



THE DIFFUSION EQUATION 371 

In Section 6 we will present typical solutions to these equations, and describe the 
success of the resulting representations on selected test problems. 

C. Some Generalizations of the Method 

Here we show how the moment-fitting method may be applied when the diffusion 
parameters are time-dependent and when the boxes are not of equal size. 

If the diffusion parameters are functions oft but not of x, the diffusion equation 
(19) may be written 

&2(x, tyat = D(t)[Pc(x, tyaxy - V(t)[Lk(x, tyax1. 

The procedure in part A may be used to obtain a relation of the form 

(37) 

The first three weights Wj(ts , t,+l) may be expressed in the following form. 

w,= 1, (39) 

WI = St’” V(t) dt, (40) 
t, 

w, = 2 f”” [o(t) + v(t) It: v(f) dt’] dt. 
t, 

(41) 

Of course it may not be possible or convenient to calculate the weights such as (41), 
and numerical approximations to the various integrals might be used. Often for 
cases in which the parameters D(t) and V(t) do not vary significantly during a time 
interval, a representative value of each parameter during each interval may be used 
directly in (22), and satisfactory accuracy obtained. 

When the box sizes are not uniform along the x-direction, an expression of the 
form (27) may still be obtained. Starting from the moment definition (23), and 
defining hij = xi - xj , we have 

dm’(ts+3 = 5 xijm&+3 
i=l 

(42) 
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Comparing (42) to (27), (31) may be written 

; pi i+dS) G+, i = Wj(TJ, i = I,...) iv, j = 0 )...) n, s > 0. (43) 

If (43) is satisfied then the moment equations (29) may be satisfied for a numerical 
representation having nonuniform box sizes. 

The moment-fitting method may also be applied with considerable rigor and 
without undue difficulty to more general parabolic equations, problems involving 
sources, problems in more than one dimension having nondiagonal diffusion 
coefficient matrices D, problems with absorbing and reflecting boundaries, and 
problems with spatially varying diffusion parameters. We hope to consider these 
problems in a later paper. 

D. Satisfying the Restrictions 

It may be noted that fitting of the zeroth moment, e.g. (32), is equivalent to (8), 
which ensures mass conservation. Also, fitting of the first moment, e.g. (33), 
provides for correct center of mass motion. Fitting of the higher moments tends to 
further increase the accuracy of the numerical solution. In particular, the fitting of 
the second moment, e.g. (34), in effect overcomes the problem of spurious diffusion 
often encountered when treating the term &/ax in (19). As we will see in the next 
section, it is easy to generate representations satisfying restrictions such as (32)-(36), 
and economical to compute with them, The only desirable properties for a 
numerical representation not necessarily satisfied by the fitting of low-order 
moments are nonnegativity of the masses and stability. When a nonnegative 
solution to (17) can be obtained, then along with the fitting of the zeroth moment, 
stability is guaranteed. 

Obtaining a nonnegative solution to (17) for a particular set of moments is not 
always possible. In cases where it is not, one may have the choice between a solution 
with negative values which gives a promise of improved goodness of fit but a 
possibility of instability, or a nonnegative solution to (17) with some reduced set 
of moments, giving a possible loss of accuracy but a guarantee of stability. How- 
ever sometimes this choice can be avoided. In some cases (see Section 6) increasing 
the time interval may make available a nonnegative solution. Also it may be 
possible to achieve the same effect by changing the sizes of the boxes, a procedure 
particularly appropriate when the diffusion parameters vary in space. In summary, 
when it is possible to obtain a nonnegative solution when fitting at least the first 
three moments (for l-dimensional problems) then the resulting numerical re- 
presentation almost certainly will adequately satisfy all the desirable properties 
listed in Section 3. 
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6. RESULTS OF TESTS OF SELECTED REPRESENTATIONS 

To illustrate the potential usefulness of the methods presented in this paper for 
developing specific numerical representations based on modeling properties of 
the solution to the diffusion equation, presented here are results of some tests of 
selected representations. First we describe the representations, then the criteria 
used to evaluate them in selected tests, and then the particular tests and the results 
obtained. Finally we discuss some alternative numerical methods for solving the 
diffusion equation which are not included in the tests. 

A. The Representations 

Each of the representations presented here is designed to give a numerical 
solution to the one-dimensional diffusion equation (19) or (37). Each representa- 
tion is labeled for later reference (e.g. I(a)). 

I. Representations Based on the Differential Form of the Diffusion Equation, 
Using Finite Differences 
Grid points separated by a distance h are used, with one point at the origin. On 

each application of the specified algorithm the concentration change at each grid 
point is calculated. Write the diffusion equation (1) in the form 

acjat = f(t, c). (44 

Using simple finite difference approximations for the spatial derivatives in (19) or 
(37), the function f(t, c) becomes 

f(t, c> = (D(t)/h2)(c(x + h, t) - 2c(x, t) + c(x - h, t)) 
- (V(t)/2h)(c(x + h, t) - c(x - h, t)). (45) 

Five different algorithms result from the use of the following approximations for 
the time derivative in (44). 

I(a). Point-slope formula. 

c(ts+A = as) + Tsf(& 3 as)). (46) 

I(b). Second-order Runge-Kutta formula. 

c(ts+,) = CO,) + @I + k,), 

k, = Ts.f(ts 3 c(ts>>, k, = Tsf(ts+l , 4tJ + k). 
(47) 

I(C). Second-order predictor-corrector formula. 

predictor: c(ts+3 = c(ts-J + (T~-~ + Ts>f(ts , c(tJ). 

corrector: c(ts+d = c(&) + +Ts(f(ts , c(td + f(ts+l , c(ts+&>. 
(48) 

(A second-order Taylor expansion is used for the first time interval.) 
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I(d). Crank-Nicolson implicit method formula. 

c(ts+,) = 4ts) + 3~sWs 2 4s)) + f(ts+1 , c(ts+&)* (49 

I(e). Fully implicit method formula. 

c(ts+,) = 4s) + 79f(tS+1 9 c(ts+d). (50) 

I(f). Instead of the formula (45), an uncentered difference scheme is used to 
approximate the expression &/ax. Equation (45) becomes 

f(t, c) = (D(t)/h2)(c(x + h, t) - 2c(x, t) + c(x - h, t)) 

_ (W)/h)(c(x, t> - 4~ - h, t)), 
I 

if V(t)>O, 
(%)lW(x 4 h, t) - 4.~ t>), I if V(t) < 0 . (51) 

The point-slope formula (46) is used to approximate the time derivative in (44). 

II. Representations Based on the Integral Form of the Diffusion Equation, Using 
Moment-Fitting 

As in Section 5B, each box in a linear array has length h and one box is centered 
on the origin. Listed here are the expressions for the only nonzero elements in the 
ith row of the matrix P(s). The number N of rows of each matrix is taken to be 
large enough that for the following tests only an insignificant amount of mass 
reaches the ends of the array by tlooo . 

In these representations determined using (31), the particular row elements 
chosen here to have nonzero values are not unique, but seem likely to be typical. 
They are chosen first to minimize the number of nonzero elements, and second to 
make nonnegative values probable for most sets of diffusion parameters. For 
convenience in the representations we use the parameters 

d(t) = D(t) 7Jh2, 

v(t) = V(t) 7,./h, 
(52) 

where D(t) and V(t) are evaluated at time i(ts + ts+& and the time dependences 
of d, o, and probabilities Pij are not written explicitly. 

II(a). From (31) with n = 2, using (22) and (28); that is, a solution to (32)-(34). 

Pi i+l = d + +v(v + 11, 
Pi i--l = d + +U(U - l), (53) 

Pi i = 1 - Pi {+I - P, i-1 . 
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II(b). From (31) with n = 3, using (22) and (28); that is, a solution to (32)-(35). 
Define y = u(v2 + 6d) - v. 
If y > 0, 

Pi ii2 = y/69 

If y < 0, 

Pi i+l = d + t(u(v + 1) - y), 
Pi i--l = d + $v(v - 1) - Pi i+2 , 

Pi i = 1 - P, i+2 - Pi %+I - Pi i-1 . 

Pi i-2 = -y/6, 

Pi i+l = d + &(v + 1) - Pi i-2, 

Pi i--l = d + &(v(v - 1) + y), 

Pi i = 1 - Pi i-2 - Pi i+l - Pi i-1 . 

II(c). From (31) with n = 4, using (22) and (28); that is, a solution to (32)-(36). 

Pi i+2 = (d(12d - 2 + 12u(v + 1)) 

+ 4-2 + d-1 + 42 + v))))P, 

Pi i-2 = (d(12d - 2 + 12v(v - 1)) 

+ 42 + 4-l + 4-2 + u))))/24, 

Pi ii-l = d + &v(v + 1) - 3P< i+2 - Pi i-2 , 

Pi i--l = d + &v(v - 1) - Pi i+2 - 3Pi i--2 , 

Pi i = 1 - Pi i+2 - Pi i-2 - Pi ifI - Pi i-1 . 

II(d). From (31) with n = 2, using (39)-(41) and (28), for when the diffusion 
parameters vary with time. 

Pi i+l = W2rJh2 + Wlrslh, 

Pi i--l = W2rs/h2 - WIrJh, 

P$ i = 1 - Pi ifI - Pi i--l. 

III. Representation Giving a Perfect Fit at t, 

The matrix of transition probabilities (identical for each s) is determined by 
setting L(t,) = 0 (see Eq. (6)). 

Ease of Generation 

B. The Criteria for Evaluation. 

The ease of generation of an algorithm may be roughly measured by the numbers 
of multiplications, additions, and equals required to prepare the algorithm for 
execution. An algorithm may be considered “ready for execution” when it is in the 
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form through which the same computations will take place for each application, 
for example, the form which is presented in a computer program. The numbers 
for ease of generation naturally will depend on what particular form of the algo- 
rithm is considered ready for execution. We assume the parameters d and 0 are 
given. Then, for example, the algorithm in I(a) may be considered to require only 
one multiplication and one equals to set up a parameter uh = iv, while according 
to (53) the algorithm in II(a) requires four multiplications, six additions, and three 
equals. 

Ease of Computation 

The ease of computation may be measured reasonably well by the numbers of 
multiplications, additions, and equals required for each application of the algo- 
rithm and for each box or grid point. For example, our utilization of the c(x, ts) + 4x, ts). 

Total operations are three multiplications, five additions, and two equals. On the 
other hand, the algorithm in II(a) requires the following operations per application 
per box. 

~&,+J = Pi ds) mi+l@s) + Pi h) mi(t,> + Pi i+l(s) mi-&>; 

mi(t,+d = f%(ts+3. 
(55) 

Total operations are three multiplications, two additions, and two equals. 
The numbers presented for this criterion, as well as those for ease of generation, 

are not intended to be the lowest possible values attainable in each particular 
circumstance. Rather they are taken more or less straightforwardly from the 
relevant equations, and thus indicate a typical amount of computational effort to 
be expected when using the algorithms. For example note that (54) is by no means 
optimal as it could be recast in the form (55), with c’s replacing the m,‘s, making 
computation for I(a) easier but generation less easy. 

Stability 

We note which representations of type II are guaranteed to be stable because 
they satisfy the restrictions (8) and (9). Several of the representations of type I may 
be proved to be stable for one or more of the tests, but we do not inquire into this 
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problem here. However we note when any algorithm in any test exhibits obviously 
unstable behavior (namely, divergent oscillations between positive and negative 
values). 

Goodness of Fit, Nonnegativity of the Masses, Mass Conservation, and Correct 
Center of Mass Motion 

Each of these criteria is considered for times after 1, 10, 100, and 1000 
applications of each algorithm (t = tl , t,, , t,,, , tlooo). The function L(t) is used to 
measure goodness of fit; for type I representations, the mass associated with each 
grid point is calculated assuming a constant concentration in the interval (xi - &h, 
xi + $h). The number of negative masses at each time may depend on the smallest 
number available on the computer used; in the present calculations done in single 
precision on a CDC Cyber 72 all numbers below about lO-288 become zero, so the 
number of negative masses is sometimes affected at tlooo . Any changes in the total 
mass or correct center of mass motion are noted, neglecting changes due to round- 
off error. 

C. The Tests and the Results 

In each of the following tests the analytical distribution being modeled arises 
from a unit delta function at the origin, with no sources or sinks present. In the 
numerical models the initial mass distribution is represented by either (type I 
representations) a unit concentration at the origin or (type II and III representa- 
tions) a single unit mass in the box at the origin as indicated by (30). In the first 
four tests each of the representations conserves mass except I(d) and I(e). Each 
of these latter two representations, based on implicit methods, gives after the first 
iteration a considerably reduced total mass. On later iterations, as the mass 
distribution becomes smoother, the loss of mass per iteration is less. For example, 
in test type (ii) representation I(d) gives at times t, , t,, , tloo , and t,,, total masses 
of .965, .949, .949, and .949, respectively. For tests type (i)-(iii) all representations 
give correct center of mass motion, except again I(d) and I(e). 

Test type (i): d = 0.2, v = 0 (constants). With constant diffusion parameters 
generation of the algorithm must be carried out only once; computation with the 
algorithm is identical for each iteration and each box. Results of the tests of type (i) 
for the criteria of goodness of fit are given in Table I. None of the representations 
gave any negative masses or concentrations, except I(c) which gave 6 and 94 
negative concentrations at t,, and t 10,, , respectively. With v = 0, I(f), II(a), and 
II(b) become identical with I(a), and results are not presented separately. All 
type II representations are guaranteed stable by the results in Section 4. 

Test type (ii): d = 0.2, u = 0.1 (constants). With v # 0, these parameters give 
a situation typically troubled by spurious diffusion. All comments for test type (i) 
apply, except that results are in Table II. 



378 BRIAN MARTIN 

TABLE I 

Results of Test Type (i) for Goodness of Fit (l.l(-3) = 1.1 x lo-*) 

Representation -WI) Wld ub4 -wxm) 

I(a) l.l(-3) 4.0(-6) 1.3(-8) 4.q-11) 
(b) 3.7(-2) 2.3(-4) X5(--7) 1.7(-9) 

I: 
3.7(-2) 1.9(-4) 5.4(-7) 1.7(-9) 
2.3(-2) 3.0(-4) X0(-5) 1.8(-5) 

(4 5.0(-2) 1.q-3) 1.2(-4) 4.3(-5) 

II(c) 3.2(-3) 1.2(-5) 3.6(-8) l.l(-10) 
III 0 7.0(-4) 2.7(-4) (1 

5 No results due to computational effort required. 

TABLE II 

Results of Test Type (ii) for Goodness of Fit (1.7(-3) = 1.7 x lo-$) 

Representation 

I(a) 
(b) 

:; 

g; 

II(a) 
@I 
(4 

III 

1.7(-3) 
3.9(-2) 
3.9(-2) 
2.5(-2) 
5.1(-2) 
8.1(-3) 

9.7(-4) 
1.6(-3) 
3.1(-3) 

0 

4.q-5) 
3.5(-4) 
3.2(-4) 
1.2(-2) 
8.4(-3) 
l.O(-3) 

8.0(-6) 
5.8(-6) 
1.2(-5) 

7.0(-4) 

6.0(-6) 1.7(-6) 
4.1(-6) l.l(--7) 
4.2(-6) 1.2(-7) 
3.9(-2) 2.7(-2) 
3.5(-2) 2.5(-2) 
3.3(-4) l.O(-4) 

1.7(-7) 5.1(-9) 
1.8(-8) 5.7(-11) 
3.6(-8) l.l(-10) 
2.8(-4) (I 

a No results due to computational effort required. 

Test type (iii): d = 0.1, z, = 0.5 (constants). These parameters give a situation 
typically troubled by negative masses as well as spurious diffusion. All comments 
for test type (i) apply, except that results, including number of negative masses, are 
in Table III, and no type II representations are guaranteed stable by the results in 
Section 4. In Section 5D it was noted that by changing the time interval it is often 
easy to avoid spurious diffusion while still guaranteeing nonnegative masses. This 
may be accomplished in the present case by using representation II(a) with the 
time interval 7, increased by a factor, among others, of 1.25 (d = 0.125, v = 0.625). 
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TABLE III 

Results of Test Type (iii) for Goodness of Fit and Nonnegativity of the Masses 
(1.4(-l) = 1.4 x 10-l) 

Representation L(h) JYt3 Wmooo) 

Number of 
negative masses at 
t1 7 kl 1 ~100 1 t1000 

I(a) 
@I 
1: 

(4 
(f 1 

Wa) 
(b) 
cc> 

111 

1.4(-l) 1.8(-l) 5.7(-l) b 1, 8, 74,h 
1.4(-l) 1.7(-2) 5.7(-4) 1.8(-5) 1, 11, 121, 562 
1.3(-l) 1.4(-l) 2.6(-2) 3.5(-l) 7.q-2) 1.2(-3) 4.1(-5) 2.0(-2) I, 1, 8,95,980 11, 122,584 

9.9(-2) 1.3(-l) 6.4(-2) 2.q-2) 1,7,79,892 
5.6(-2) 2.q-2) 6.2(-3) 1.9(-3) co, 070 

5.7(-3) 6.5(-4) 2.3(-5) 7.3(-7) 1,6,66,231 
1.7(-2) 4.5(-4) 1.5(-6) 4.5(-Y) 1.9,99, 186 
8.5(-3) 1.5(-4) 2.5(-7) 6.6(-10) 2, 14,156,193 

0 5.0(-3) 1.7(-3) a 0, 0, 0, a 

o No results due to computational effort required. 
b Unstable behavior. 

Because of the increased time interval, the distribution resulting from this altered 
representation is at t, , t,, , and tsoo comparable to the other representations at 
t 1o , ho0 y and ~looo . Hence we note that for the representation with increased time 
interval, L(t,J = 6.9 x 10-4, L(t,,) = 2.0 x 10-5, and L(t,,) = 6.4 x lo-‘, with 
no negative masses generated, a guarantee of stability, and 0.8 as much computa- 
tional effort required. Note that this technique cannot be used for representations 
such as I(a). 

Test type (iv). d(t) = 0.2 + 0.1 1 sin 2~7t/20 1 , u(t) = &d(t); t, = s. With time- 
varying diffusion pramaters, generation of the algorithm must be carried out once 
for each different set of values of the parameters. With the parameters d(t) and v(t) 
given above this requires six generations. Results of the tests of type (iv) for the 
criteria of goodness of fit and center of mass motion are given in Table IV. The 
center of mass motion figure is the fractional deviation from the correct figure. 
Only T(c) produced any negative masses. All type II representations are guaranteed 
stable by the results of Section 4. 

Test type (v). For nonuniform box sizes or grid point spacing we here only 
briefly summarize the results obtained. Representations of type I, when generalized 
in a natural manner for nonuniform grid point spacing, do not conserve total mass, 

sS1/17/4-3 
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TABLE IV 

Results of Test Type (iv) for Goodness of Fit and Center of Mass Motion 
(3.6(-3) = 3.6 x 1O-3) 

Representation L(r,) -w,o) L(h) ubo) 

Fractional deviation 
from correct center of 

mass motion at 
t1 t1o 1 ho0 , ho 

G-4 3.6(-3) 5.0(-5) 9.5(-6) 3.6(-6) -7.2(-2) -2.O(-3) 

(b) 4.2(-2) 2.1(-4) 4.2(-6) 1.3(-6) -6.O(-4) -2.O(-3) 

Cc) 42-2) 8.7(-4) a a 3.0(-4) -1.9(-3) 

(4 3.0(-2) 6.4(-3) lS(-2) 2.1(-2) -9.2(-l) -5.6(-l) 

i;; 
4.8(-2) 9.0(-3) 3.5(-2) 2.1(-2) 4.1(-2) 5.2(-l) 
5.2(-3) l.O(-3) 2.7(-4) 8.3(-5) -7.2(-2) -2.O(-3) 

I&d 7.3(-4) 4.q-5) 1.4(-6) 3.5(-7) 3.0(-4) l.O(-3) 

0) 9.2(-4) 2.2(-6) 7.6(-S) 2.0(-7) 3.0(-4) l.O(-3) 
2.8(-3) 5.2(-6) 6.5(-8) 2.0(-7) 3.0(-4) l.O(-3) 
7.3(-4) 3.9(-5) 9.5(-7) 2.9(--8) 0 0 

0 Unstable behavior. 

and as in the case of representations I(d) and I(e) on the other tests, this leads to 
very poor goodness of fit after long periods of time. Representations of type II 
conserve total mass, and perform better according to the other criteria as well. 

D. Discussion of Results 

The results in Tables I-IV show that when comparing two numerical representa- 
tions, the one producing a better fit after one application does not necessarily 
produce a better fit after numerous applications. Specifically, representation III 
with a perfect fit at t, gives a poor fit relative to most other representations at 
later times. Also in comparing any two representations based on moment-fitting, 
the one modeling more moments is more likely to give a better fit when the time 
of comparison is larger. In Table IV we see that as the time of comparison becomes 
larger, representation II(d) which models three moments exactly becomes more 
successful compared to the other representations, the centers of mass of whose 
numerical distributions slowly but steadily become displaced from the center of 
mass of the analytical solution. 

Finally, in Table V we list characteristic numbers for ease of generation and ease 
of computation, determined by inspection of the algorithms presented in part A 
above. These figures demonstrate that while representations II(a)-(c), which model 
moments of the diffusion equation with constant parameters, require considerable 
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TABLE V 

Characteristic Values for Ease of Generation and Computation for the Sample Representations, 
Listed as Numbers of Multiplications, Additions, and Equals Per Different Set of Diffusion 
Parameters (Generation) or Per Box or Grid Point and Per Application of the Numerical Algorithm 

(Computation) 

Generation Computation 

I. Representations based on the differential form of the 
diffusion equation, using finite differences. 

(1) Using (45) for the space derivatives, and for the time 
derivative, 
(a) point-slope formula (46): 
(b) second-order Runge-Kutta formula (47): 
(c) second-order predictor-corrector formula (48): 
(d) Crank-Nicolson method formula (49): 
(e) fully implicit method formula (50): 

(2) Using (51) with an uncentered difference for the space 
derivative, and for the time derivative, 
(f) point-slope formula (46): 

II. Representations based on the integral form of the diffusion 
equation, using moment-fitting. 
(a) conserving 3 moments: 
(b) conserving 4 moments: 
(c) conserving 5 moments: 
(d) conserving 3 moments when diffusion parameters vary 

with time: 

III. L(l,) = 0: 

l,O,l 3,5,2 
I,% 1 7, 11,4 
l,O, 1 8, 11,4 
2,426 8, 5,5 
1,3, 3 5,394 

0, 0, 0 3,5,2 

4,6,3 3,2,2 
9, 11,5 4,3,2 
22,26, 5 5,4,2 
depends on 

difficulty of 3,2,2 
integrations 

lengthy K,K- I,2 
Km 15 

effort to generate the transition probabilities for the algorithm, after generation is 
completed the computational effort required is quite reasonable. So if the transition 
probabilities in such a representation are constant or change in time in a regular 
manner, then the total ease of generation and computation for the representation, 
measured by execution time on a computer, will be smaller than for any but the 
very simplest of alternative representations. 

In complicated problems it will of course not usually be possible to determine 
L(r) or other measures of the success of a numerical representation. But when 
using representations based on modeling properties of the solution to the diffusion 
equation, one will know that, for example, the solution has no negative masses, or 
has the same first three moments as the exact solution. The examples in this 
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section, and in particular the measure t(t), are designed to show that, by ensuring 
that it has certain desirable properties, the numerical solution will indeed be 
satisfactory. 

E. Comments on Other Methods for Numerically Solving 
the Diffusion Equation. 

In the previous tests we have considered a cross-section of representations based 
on finite differences (type I), sample representations obtained using the method 
proposed in this paper (type II), and a representation illustrating that a good fit at 
small times does not necessarily lead to a good fit at large times(type III). As well as 
these representations, there exists a wide variety of other approaches to the 
numerical solution of the diffusion equation (see [5, Section 2.21). Here we discuss a 
number of the methods not included in the above tests. 

Other representations based on the differential form of the diffusion equation 
using finite differences (see, for example, [6, pp. 93-951) cannot be expected to be 
significantly more successful than the ones tested here, unless the representation is 
designed for a special problem. In particular, implicit methods tend to give poor 
results because of nonconservation of mass. 

The representation of Bassett et al. [I] is based on the integral form of the 
diffusion equation; however for purposes other than conservation of mass and 
nonnegativity of the masses, it is equivalent to I(f) on tests (i)-(iv). 

The method of Egan and Mahoney [7] involves as part of the numerical algorithm 
explicit calculation of the first three moments of the concentration in each box. 
When applied to the diffusion equation (see their Appendix) this method involves a 
large computational effort, seems to require small time intervals to attain reasonable 
accuracy, and gives results hard to interpret; the center of mass of a “grid-element” 
may move right out of the box with which it is associated. 

The finite element approach when applied to the diffusion equation seems to 
require finite difference approximations for the time derivative, and except for 
special problems appears to give no better results than representations obtained 
using finite differences [8]. 

In methods using “Lagrangian” point masses, the movement of each point mass 
is calculated individually, and the mass in a box at a given time is the aggregate 
of all the mass points in that box. Since the mass points move independently of the 
set of boxes, this method is quite different from the one presented in this paper. 
Applied to the diffusion equation, the most successful of these methods use random 
displacements of the point masses to simulate diffusion. The accuracy of such 
methods depends on the number of point masses used. However in most cases, to 
obtain an accuracy comparable with that of the methods tested here, the necessary 
computational effort is orders of magnitude larger (see [9] and discussion 
thereafter). 
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Finally, it is possible to solve fluid dynamical equations by numerically following 
the motion of suitable markers of constant concentration. When applied to the 
diffusion equation [lo] this method is limited by its use of finite differences, and 
except for special problems appears not to be superior to conventional approaches 
based on finite differences. 
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